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A proof of the relativistic H theorem by including nonextensive effects is given. As it happens in the
nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the
second law of thermodynamics combined with a duality transformation implies that the q parameter lies on the
interval �0,2�. It is also proven that the collisional equilibrium states �null entropy source term� are described
by the relativistic q power law extension of the exponential Juttner distribution which reduces, in the nonrel-
ativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the
relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromag-
netic field F��. Such results reduce to the standard ones in the extensive limit, thereby showing that the
nonextensive entropic framework can be harmonized with the space-time ideas contained in the special rela-
tivity theory.

DOI: 10.1103/PhysRevE.72.057101 PACS number�s�: 05.90.�m, 05.20.�y, 03.30.�p, 05.70.Ln

In the past few years, a great deal of attention has been
paid to the nonextensive Tsallis entropy both from theoretical
and observational viewpoints �1–4�. Recent applications of
the nonextensive entropy to an increasing number of physi-
cal problems are beginning to provide a more definite picture
on the kind of scenarios where this Tsallis formalism proves
to be extremely useful �3–13�.

At present, self-gravitating systems and plasma physics
offer the best framework for searching to nonextensive ef-
fects. The first one is characterized by very strange kinetic
and thermal properties �see �5� for recent publications on this
topic�. Actually, collisionless stellar systems, such as galax-
ies, are endowed with negative specific heat, and the simplest
density profiles based on the Maxwellian distribution lead to
infinite mass �the so-called singular isothermal sphere�. In
the case of plasmas, Boghosian’s treatment for a two-
dimensional pure electron plasma yielded the first experi-
mental confirmation of the Tsallis theory �6�, whereas experi-
ments related to dispersion relations for electrostatic plane-
wave propagation also points to a class of power law Tsallis
velocity distributions �7�. In reality, it is now widely believed
that the nonequilibrium properties of such systems away
from Boltzmann-Gibbs state are not completely understood
�8�. This nonextensive statistical formalism also proved to be
a useful construct for the analysis of many interesting prop-
erties of linear and nonlinear Fokker-Planck equations �9�.

On the other hand, most of the observational or experi-
mental evidence supporting the Tsallis proposal are related to
the power-law velocity distribution associated with the Tsal-
lis thermostatistical description of the classical N body prob-
lem �10�. For a dilute gas of massive point particles, the
nonextensive effects are simply parametrized by the local
entropy density formula

Sq = − kB� fq lnq fd3p , �1�

where kB is the Boltzmann constant, f is the distribution
function, q is the nonextensive parameter, and the
q-logarithmic function is defined by

lnq f = �1 − q�−1�f1−q − 1� �f � 0� �2�

which recovers the standard Boltzmann-Gibbs entropy
S=−kB� f ln fd3p in the limit q→1. In the nonrelativistic
limit, the time evolution of Sq was analyzed with emphasis
on the Liouville and Fokker-Planck equations �11� as well as
through a nonextensive generalization of the nonrelativistic
Boltzmann H theorem �12,13�.

As recognized by Lima et al. �12� �hereafter referred to as
Paper I�, the attempts for extending the Boltzmann kinetic
theory by including nonextensive effects, which basically
means a q transport equation and the associated H theorem,
required a departure from the celebrated molecular chaos hy-
pothesis advanced by Boltzmann. In this connection, it is
worth noting that the q Boltzmann equation of Paper I differs
from the one proposed by Kaniadakis �14�, an approach
based on the kinetic interaction principle, only by the as-
sumed form of the collision integral.

Theoretically, beyond the applications closely related to
the nontrivial solutions of the nonrelativistic q transport
equation and the associated transport coefficients �7�, it is
clearly necessary to go one step further, by extending the
proof of the H theorem to the relativistic and quantum do-
mains. The basic reasons are very well known, and have
partially guided the development of modern physics �15�.
Actually, in the case of the Maxwell-Boltzmann distribution,
this basic program has already been performed in detail to
special relativity �16�, quantum theory �17�, as well as by
including the gravitational interaction to the context of gen-
eral relativity theory �18�. In particular, the collisional equi-
librium of a relativistic gas of massive point particles is de-
scribed by the Juttner distribution function which contains
the number density, the temperature, and the local four-
momentum as free parameters �15,16�.

In this Brief Report, the nonrelativistic q Boltzmann equa-
tion and the H theorem discussed in Paper I are extended to
the special relativistic domain through a manifestly covariant
approach. As we shall see, the whole argument follows from
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a direct generalization of the molecular chaos hypothesis and
the expression of the four-entropy flux in the spirit of the
nonextensive Tsallis prescription. The leitmotiv of this Brief
Report is to show that the kinetic nonextensive approach can
also be harmonized with the space-time ideas contained in
the special relativity theory.

To begin with, we recall that the proof of the standard
relativistic H theorem is also based on the molecular chaos
hypothesis �Stosszahlansatz�, i.e., the assumption that any
two colliding particles are uncorrelated. This means that the
two-point correlation function of the colliding particles can
be factorized

f�x,p,p1� = f�x,p�f�x,p1� , �3�

or, equivalently,

ln f�x,p,p1� = ln f�x,p� + ln f�x,p1� , �4�

where the particles have four-momentum p� p�= �E /c ,p� in
each point x�x�= �ct ,r� of the space-time, with their energy
satisfying E /c=�p2+m2c2 �in the above expressions, p and
p1 are the four-momenta just before collision�. In what fol-
lows, we show that the relativistic nonextensive entropic
measure is consistent with a slight departing from
“Stosszahlansatz” �molecular chaos� when exact correlations
are introduced. Operationally, this means that one must re-
place the logarithm functions appearing in Eq. �4� by their
nonextensive counterpart which are represented by the q
logarithmic �power laws� defined by Eq. �2�. It should be
recalled that the validity of the chaos molecular hypothesis
still remains as a very controversial issue �19�. Probably, the
unique consensus is that it is by no means a consequence of
the laws of mechanics, and, as shown in Paper I, the
Stosszahlansatz is not responsible by the irreversible content
of the Boltzmann approach.

Let us now consider a relativistic rarified gas containing
N-point particles of mass m enclosed in a volume V, and
under the action of an external four-force field F�. From a
kinetic viewpoint, the states of the gas must be characterized
by a Lorentz invariant one-particle distribution function
f�x , p�. By definition, the quantity f�x , p�d3xd3p gives, at
each time t, the number of particles in the volume element
d3xd3p around the particles space-time position x and mo-
mentum p. By taking into account the nonrelativistic treat-
ment �see �12��, one may assume that the temporal evolution
of the relativistic distribution function f�x , p� is driven by the
following q transport equation:

p���f + mF� � f

�p� = Cq�f� , �5�

where the index � take the four values 0,1,2,3, while ��

= �c−1�t ,�� indicates differentiation with respect to time and
space coordinates, respectively, and Cq denotes the relativis-
tic q-collisional term. Note that the left-hand side of �5� is
just the total derivative of the distribution function or the
“streaming term.” This means that the nonextensive effects
can be manifested only through the collisional term which is
a local slowly varying function of f�x , p�. The collision inte-
gral Cq�f� must be consistent with the energy, momentum,

and the particle number conservation laws, and its specific
structure must be such that the standard result is recovered in
the limit q→1. At this point, it is interesting to compare the
approach developed here which is based on Eq. �5� with the
one proposed by Lavagno �20�. In the latter work, all the
nonextensive effects are quantified by assuming a modified
Boltzmann equation to the quantity fq [see Eq. �13� of the
Lavagno �20�]. In particular, this means that such theories
must lead to different predictions of the physical quantities,
as for instance, the expressions for the transport coefficients.

Now, since Cq�f� leads to a non-negative local q-entropy
source, that is, �q�x����Sq

�, where S� is the four-entropy
flux �an identically vanishing quantity for equilibrium
states�, its general form reads

Cq�f� =
c

2
� F�Rq�f , f��

d3p1

E1
d� , �6�

where d� is an element of the collision solid angle, the
scalar F is the invariant flux, which is equal to F
=��p�p1

��2−m4c4, and � is the differential cross section of
the collision p+ p1→p�+ p1� �see Ref. �15� for more details�.
All quantities are defined in the center-of-mass system of the
colliding particles. As a point of fact, relativity enters only in
the definition of F, and implicitly through the differential
cross section �. The quantity Rq�f , f�� is a difference of two
correlation functions which are assumed to satisfy a q gen-
eralized form of the molecular chaos hypothesis expressed as
�12�

Rq�f , f�� = eq�f�q−1 lnq f� + f1�
q−1 lnq f1��

− eq�fq−1 lnq f + f1
q−1 lnq f1� , �7�

where primes refer to the distribution function after collision.
Note that in the limit q→1, the above expression reduces to
R1= f�f1�− f f1, thereby showing that the molecular chaos hy-
pothesis is readily recovered. Similarly, the nonextensive
four-entropy flux reads

Sq
� = − kBc2� p�fq lnq f

d3p

E
, �8�

and as should be expected, c−1Sq
0 is just the local Tsallis’

entropy density as given by �1�. Now, in order to obtain the
source term, we first take the four-divergence of Sq

�

��Sq
� � �q = − kBc2� �qfq−1 lnq f + 1�p���f

d3p

E
, �9�

and combining with the nonextensive relativistic Boltzmann
equation �5�, one may rewrite the above expression in the
following form:

�q = −
kBc3

2
� F��qfq−1 lnq f + 1�Rq

d3p

E

d3p1

E1
d� . �10�

At this point, it is convenient to rewrite �q in a more sym-
metrical form by using some elementary symmetry opera-
tions which also take into account the inverse collisions.
First we notice that by interchanging p and p1 the value of
the integral is preserved. This happens because the scattering
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cross section and the magnitude of the flux are invariants
�15�. In addition, the value of �q is not altered if we integrate
with respect to the variables p� and p1�. Actually, although
changing the sign of Rq in this step �inverse collision�, the
quantity d3pd3p1 / p0p1

0 is also a collisional invariant �15�.
Finally, as we have done in Paper I, we apply a “duality”
transformation �see the discussion below and Ref. �21�� of
the form fq−1 lnq f =lnq* f , where the new nonextensive pa-
rameter is related to the old one by q* =2−q. As one may
note, such considerations imply that the q entropy source
term can be written as

�q�x� =
qkBc3

8
� F��lnq* f� + lnq* f1� − lnq* f − lnq* f1�

	�„eq�lnq* f� + lnq* f1�� − eq�lnq* f − lnq* f1�…�

	
d3p

E

d3p1

E1
d� . �11�

This is our main result, and the reader should compare it
with the nonrelativistic expression deduced in Paper I. As
widely known, the irreversible nature of thermodynamics
emerging from molecular collisions is recovered if the above
quantity is positive definite. In the present case, such a con-
dition can be guaranteed in two steps. First, we notice that
the integrand of

�lnq* f� + lnq* f1� − lnq* f − lnq* f1��eq�lnq* f� + lnq* f1��

− eq�lnq* f − lnq* f1�� �12�

is always positive for any pair of distributions �f , f1� and
�f� , f1��. This means that the sign of the four-entropy source is
now completely determined by the sign of the nonextensive
parameter. Therefore, if the second law is to be obeyed
�15,22�, the values of this parameter must be restricted to q

0. In other words, when q�0, the relativistic q entropy
source of a given volume element decreases in the course of
time. Note that the boarder case �q=0� seems to be physi-
cally meaningless, since the entropy is constant regardless of
the solution obtained from the transport equation with a non-
null collision integral. In this concern, one may ask if the q
parameter is limited from above. As one may note, repeating
all the calculations present until now with a duality transfor-
mation, i.e., by taking q* =2−q in the Tsallis entropy, Eq.
�1�, it is easy to conclude that q* �0. Therefore, the duality
transformation together with the relativistic H theorem imply
that q is constrained on the interval �0,2� �as pointed out by
Karlin et al. �21�; such a result is also valid in the nonrela-
tivistic theory �12��. In particular, this means that the upper
bound of q, i.e., q�2 is not a purely quantum mechanics
restriction, as recently claimed in the literature �23�.

In order to complete the proof of the theorem, let us now
derive the nonextensive Juttner distribution. Such a function
is the relativistic version of the q power Tsallis distribution
�10,12�, and must be obtained as a natural consequence of
the relativistic H theorem. As happens in the classical case,
�q=0 is a necessary and sufficient condition for local and

global equilibrium. Since the integrand appearing on the ex-
pression of �q must be positive definite, this occurs if and
only if

lnq* f� + lnq* f1� = lnq* f + lnq* f1, �13�

where the four-momenta are connected through a conserva-
tion law �p�+ p1

�= p��+ p1�
�� which is valid for any binary

collision. Therefore, the above sum of q logarithms remains
constant during a collision. It is a summational invariant. In
the relativistic case, the most general collision invariant is a
linear combination of a constant plus the four-momentum p�

�15�. Consequently, we must have

lnq* f0�x,p� = ��x� + �p�, �14�

where ��x� is a scalar, � a four-vector, and p� is the four-
momentum. After simple algebra, we may rewrite �14� as a
relativistic nonextensive distribution

f0�x,p� = 	1 − �1 − q����x� + �p��
1/1−q, �15�

with arbitrary space and time-dependent parameters ��x� and
��x�. The above expression is the relativistic version of the
q Tsallis distribution �12�. The function f0�x , p� is the most
general expression which leads to a vanishing collision term
and entropy production, and reduces to Juttner distribution in
the limit q→1. However, it is not true in general that f0�x , p�
is a solution of the transport equation. This happens only if f0

also makes the left-hand side of the transport equation �5� to
be identically null. Nevertheless, since �15� is a power law,
the transport equation implies that the parameters ��x� and
��x� must only satisfy the constraint equation

p�����x� + p�p�����x� + m��x�F��x,p� = 0. �16�

The nonextensive distribution of the form �15�, with the spe-
cific parameters obeying the above equation, describes the
relativistic �nonextensive� local equilibrium states.

For illustration purposes, let us now consider a relativistic
gas under the action of the Lorentz four-force F��x , p�
=−�Q /mc�F���x�p�, where Q is the charge of the particles
and F�� is the Maxwell electromagnetic tensor. Following
standard lines, it is easy to show that the local equilibrium
function in the presence of an external electromagnetic field
reads

f�x,p� = �1 − �1 − q��� − �p� + c−1QA��x��U�

kBT
�1/1−q

,

�17�

where U� is the mean four-velocity of the gas, T�x� is the
temperature field, � is the Gibbs function per particles, and
A��x� the four-potential. Note that the above expression in
the limit q→1 reduces to the well-known expression �15,24�

f�x,p� = exp�� − �p� + c−1QA��x��U�

kBT
 . �18�

In summary, we have proposed a q generalization of the
relativistic Boltzmann’s equation and the associated H theo-
rem along the lines of the Tsallis’ nonextensive kinetic
theory. We have found that the nonextensive ideas can be
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consistently extended in order to incorporate the space-time
concepts of the special relativity. In addition, since the basic
results were derived in a manifestly covariant way, their gen-
eralization to the general relativistic framework can be
readily accomplished.

It is worth noting that the relativistic counterpart of the H
theorem constrains the physically allowed values for the q
parameter �as it occurs in the Newtonian regime�, and its
proof also does not require the Stosszahlansatz �molecular
chaos� Boltzmann assumption. For the reasons discussed be-
fore, the q nonextensive contributions must appear explicitly
only in the collisional term of the q transport equation, and,
as such, the approach followed here differs profoundly from
another attempt to generalize the Boltzmann equation within
the spirit of the Tsallis’ framework �25,20�. As should be
expected, the relativistic class of q distributions reduce to the
standard Juttner result in the extensive limit q=1. However,
different from the extensive Maxwell-Boltzmann-Juttner ap-
proach, correlations are extremely relevant in the nonexten-
sive context �see also Paper I�, and, more importantly, the
corresponding modifications in the collisional term are con-
sistent with the standard laws of microscopic dynamics. As

we have shown, such correlations are exactly described and
form the physical basis of the nonextensive H theorem either
for the relativistic and nonrelativistic regimes.

It should be stressed that the combination of the relativis-
tic H theorem and duality transformation �21� restricted the q
parameter on the range �0,2�, which is exactly the same result
of the nonrelativistic quantum domain �23� and of the con-
sistent framework for generalized statistical mechanics �26�.
It should be noted, however, that the allowed range of q may
be even smaller if one takes into account the finite normal-
ization condition and the negativeness of heat capacity. In the
nonrelativistic regime, for instance, it has been shown that q
must be smaller than 5/3 �5,27,28�. Finally, two points to be
noted here and explored in the near future are the possible
connection between the relativistic nonextensive function
and the � distributions �29�; and the search to the expressions
of the q relativistic transport coefficients �30�.
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